Sections
Access Technologies
Image Slideshow
Right Column
Text Area

AC-Transformer-DS: AI Accelerator Chip for Multimodal Large Models

Text Area

Technology Edges and Chip Highlights

  • Based on algorithm-hardware co-design strategy and leveraging our self-developed AI chip design automation toolset, create high-efficiency AI accelerator chips for large multimodal models
  • Support rapid reconfiguration of parallel dimensions, memory hierarchy, and other hyperparameters according to the architecture search results from the toolchain software, enabling optimization for diverse workloads
  • Support more than 40 core instructions and provides a scalable instruction framework that allows customized development for specialized operations or emerging algorithms  
Text Area

Supported Networks

Large Language Models
DeepSeek-1.5B, DeepSeek-7B, Llama3-8B, Gemma3-4B, Qwen3-1.7B, Qwen3-8B, …

Generative Models
Grounding DINO, Stable Diffusion, ... 

Vision-Language Models
Llava-7b, Qwen-VL-7B, DeepSeek-VL-7B, ...

Vision Transformers
EffViT, SegFormer, MobileViT, SwinT, HrFormer, …

Convolution Neural Networks
ResNet, MobileNet, Yolo, Openpose, Inception, MTCNN, UNet, ...  

Text Area

Supported Operators

Standard Conv. Tile_trans_II
Depth-wise Conv.  Roll
Max/Avg Pooling  img2mat
GEMM/GEMV mat2img
ReLU/PRelu/etc LUT 1->N
Non-linear act. LUT 1->1
Bilinear Resize LUT N->N
Bicubic Resize Mask
Softmax S-ME
RMS-Norm S-MV
Layer-Norm S-ADV
Rotation D-ADD
Data Move D-MUL
Concatenation D-ME-ADD
ROI D-MV-ADD
Broadcast RoPE
Transpose Inst. Trans
Depth2space Data Sample
Space2depth Up-sample
Tile_trans_I EMA